KALMAN FILTERS

WHY?

PREDICTION:

- TEMPERATURE
- Economics
- **O**BJECT **T**RACKING

Example of Kalman filter for tracking a moving object in 1-D

WHAT DO THEY DO?

PROBLEM:

- Given a system with sensors
- The system is linear
- The sensors have Gaussian Noise

KF SOLUTION:

- Uses previous state of system
 - only needs last state (none before)
- Uses current measurement from sensors
- Combines 2 sources into one output
- This output attempts to eliminate noise from sensors to predict the true state of the system

GOAL: Predict next state of a system

Example of Kalman filter for tracking a moving object in 1-D

WHAT DO THEY DO? PART 2

- Requires 8 parameters:
 - 1.) **F** state transition matrix
 - 2.) **B** control input matrix
 - 3.) **Q** covariance matrix of process noise
 - 4.) \mathbf{u} control input vector (closely tied with x)
 - 5.) x_n initial state of system
 - 6.) H measurement matrix
 - 7.) \mathbf{R} covariance matrix of measurement noise
 - 8.) z_1, \ldots, z_k measurements from sensor

Can be split up into 2 parts:

1. Process Model

2. Measurement Model

SETTING UP BOTH MODELS

Parameters:

- 1.) **F** state transition matrix
- 2.) **B** control input matrix
- 3.) **Q** covariance matrix of process noise
- 4.) \mathbf{u} control input vector (closely tied with x)
- 5.) \mathbf{x}_{0} initial state of system
- 6.) H measurement matrix
- 7.) \mathbf{R} covariance matrix of measurement noise
- 8.) z_1, \ldots, z_k measurements from sensor

Process Model

$\mathbf{x}_{\nu+1} = \mathbf{F}\mathbf{x}_{\nu} + \mathbf{B}\mathbf{u}_{\nu} + \mathbf{w}_{\nu}$

- w_k is associated with Q
- It is the process noise vector
- $W_k \sim N$ (0, Q)

Measurement Model

- $z_{k+1} = Hx_k + v_k$
 - v_k is associated with R
 - It is the measurement noise vector
 - $v_k \sim N$ (0, R)

QUICK NOTES BEFORE IMPLEMENTATION

Parameters:

- 1.) **F** state transition matrix
- 2.) **B** control input matrix
- 3.) **Q** covariance matrix of process noise
- 4.) \mathbf{u} control input vector (closely tied with x)
- 5.) $\mathbf{x}_{\mathbf{n}}$ initial state of system
- 6.) H measurement matrix
- 7.) \mathbf{R} covariance matrix of measurement noise
- 8.) z_1, \ldots, z_k measurements from sensor

- Q and R are the noises
 - They are not known and must be tuned
- The covariances of variables are often 0 in object tracking
 - Spatial dimensions are independent

>THE ALGORITHM >

STAGE 1 (Prediction):

• Predicted State Estimate (\tilde{x}_{k})

$\tilde{x}_{k} = Fx^{+}_{k-1} + Bu_{k-1}$

• Predicted Error Covariance (P^{-}_{μ})

$P^{-}_{k} = FP^{+}_{k-1}F^{+} + Q^{-}$

STAGE 2 (Update):

- Measurement Residual (\tilde{y}_k)
- Kalman Gain (K_k) $K_k = P^-_k H^T (R + HP^-_k H^T)$
- Updated State Estimate (x_k^+) $x_k^+ = \tilde{x}_k + K_k \tilde{y}_k$
- Updated Error Covariance (P_{k}^{+}) $P_{k}^{+} = (I - K_{k}H) P_{k}^{-}$

Parameters:

- 1.) **F** state transition matrix
- 2.) **B** control input matrix
- 3.) **Q** covariance matrix of process noise
- 4.) \mathbf{u} control input vector (closely tied with x)

- 5.) \mathbf{x}_0 initial state of system
- 6.) H measurement matrix
- 7.) \mathbf{R} covariance matrix of measurement noise
- 8.) z_1, \ldots, z_k measurements from sensor

Parameters:

- 1.) **F** state transition matrix
- 2.) **B** control input matrix
- 3.) \mathbf{Q} covariance matrix of process noise
- 4.) \mathbf{u} control input vector (closely tied with x)

- 5.) $\mathbf{x}_{\mathbf{n}}$ initial state of system
- 6.) H measurement matrix
- 7.) \mathbf{R} covariance matrix of measurement noise
- 8.) z_1, \ldots, z_k measurements from sensor

SUMMARY OF K.F. AND ITS CONS

- Uses last state and measurements
- Uses Q and R as the error which are tunable parameters
 - $w_k \sim N$ (0, Q)
 - $v_k \sim N$ (0, R)
- Only works if the equation is linear
- Only works if Q and R are Gaussian

* Real-world is non-linear (i.e. angles of measurements)

Why wouldn't Q and R be Gaussian?

- Obstruction and misdetection of object
- Example:
 - Computer vision detects part of the background as additional part of the object

BEYOND K.F. LIMITATIONS

•

Extended Kalman Filter

- Deals with non-linear problems
- Linearizes the problem
- Does this by approximating around the mean
- Able to use same equations as in Kalman Filter after linearized

Unscented Kalman Filter

- Deals with non-linear problems
- Also linearizes the problem
- Approximates around sigma points
 - One of these points is the mean
 - Each point has an associated weight
 - More computationally expensive

