KALMAN FILTERS

WHY?

\blacktriangleright t=13s $t=12s$ $t = 11s$ $t=10s$ $t = 12s$ $t = 9s$ $t = 8s$ $t=7s$ $t=6s$ + $t=5s$ Feature mask $t = 4s$ \blacktriangleright $t = 3s$ $t=2s$ $t=1s$ $t = 5s$ $t=0s$

Example of Kalman filter for tracking a moving object in 1-D

PREDICTION:

- TEMPERATURE
- ECONOMICS
- *• OBJECT TRACKING*

WHAT DO THEY DO?

PROBLEM:

- Given a system with sensors
- The system is linear
- The sensors have Gaussian Noise

KF SOLUTION:

- Uses previous state of system
	- only needs last state (none before)
- Uses current measurement from sensors
- Combines 2 sources into one output
- This output attempts to eliminate noise from sensors to predict the true state of the system

GOAL: Predict next state of a system

Example of Kalman filter for tracking a moving object in 1-D

WHAT DO THEY DO? PART 2

}
}

- Requires 8 parameters:
	- 1.) F state transition matrix
	- 2.) \mathbf{B} control input matrix
	- 3.) Q covariance matrix of process noise
	- 4.) \mathbf{u} control input vector (closely tied with x)
	- 5.) x_0 initial state of system
	- 6.) H measurement matrix
	- 7.) R covariance matrix of measurement noise }
	- 8.) $\mathbf{z}_1, \, \dots, \, \mathbf{z}_k$ measurements from sensor

Can be split up into 2 parts:

1. Process Model

2. Measurement Model

SETTING UP BOTH MODELS

Parameters:

- 1.) F state transition matrix
- 2.) B control input matrix
- 3.) Q covariance matrix of process noise
- 4.) \mathbf{u} control input vector (closely tied with x)
- 5.) $\ x_{\raisebox{1pt}{\scriptsize o}}$ initial state of system
- 6.) H measurement matrix
- 7.) R covariance matrix of measurement noise
- 8.) $\mathsf{z}_1, \, ... \, , \mathsf{z}_k$ measurements from sensor

Process Model

$x_{k+1} = Fx_k + Bu_k + w_k$

- w_{k} is associated with Q
- It is the process noise vector
- $W_k \sim N$ (0, Q)

Measurement Model

- $z_{k+1} = Hx_k + v_k$
	- v_{k} is associated with R
	- It is the measurement noise vector
	- *v_k* ~ *N* (0, R)

QUICK NOTES BEFORE IMPLEMENTATION

Parameters:

- 1.) F state transition matrix
- 2.) B control input matrix
- 3.) Q covariance matrix of process noise
- 4.) \mathbf{u} control input vector (closely tied with x)
- 5.) $\ x_{\raisebox{1pt}{\scriptsize o}}$ initial state of system
- 6.) H measurement matrix
- 7.) R covariance matrix of measurement noise
- 8.) $\mathsf{z}_1, \, ... \, , \mathsf{z}_k$ measurements from sensor

• **Q** and **R** are the noises

- They are not known and must be tuned
- The covariances of variables are often 0 in object tracking
	- Spatial dimensions are independent

DE ALGORITHM DE

STAGE 1 (*Prediction):*

• Predicted State Estimate (*x*^{*k*}

$\tilde{x}_k = F x_{k-1}^+ + B u_{k-1}^-$

• Predicted Error Covariance (*P – k)*

P – $k = FP^{+}{}_{k-1}F^{+} + Q$

STAGE 2 (*Update):*

- Measurement Residual (\tilde{y}_k) \tilde{Y}_k $= z_k$ *–* H*x̃k*
- Kalman Ga<u>i</u>n *(K_k)* $K_{k} = P^{-}{}_{k}H^{T}(R + HP^{-}{}_{k}H^{T})^{-1}$
- Updated State Estimate *(x + k) x +* $k = \overline{X}_k + K_k \overline{Y}_k$
- Updated Error Covariance (P^+ *k) P +* $k_k = (I - K_k H) P^{-}$

Parameters:

- 1.) F state transition matrix
- 2.) B control input matrix
- 3.) Q covariance matrix of process noise
- 4.) \mathbf{u} control input vector (closely tied with x)
- 5.) $\ x_{\rm o}^{}$ initial state of system
- 6.) H measurement matrix
- 7.) R covariance matrix of measurement noise
- 8.) z₁, … , z_k measurements from sensor

- 2.) B control input matrix
- 3.) Q covariance matrix of process noise
- 4.) \mathbf{u} control input vector (closely tied with x)
- 5.) $\ x_{\rm o}^{}$ initial state of system
- 6.) H measurement matrix
	- R covariance matrix of measurement noise
- 8.) z₁, … , z_k measurements from sensor

SUMMARY OF K.F. AND ITS CONS

- Uses last state and measurements
- Uses Q and R as the error which are tunable parameters
	- $W_k \sim N$ (0, Q)
	- *v_k* ~ *N* (0, R)
- Only works if the equation is linear
- Only works if Q and R are Gaussian

Real-world is non-linear (i.e. angles of measurements)

Why wouldn't Q and R be Gaussian?

- Obstruction and misdetection of object
- Example:
	- Computer vision detects part of the background as additional part of the object

BEYOND K.F. LIMITATIONS

- Deals with non-linear problems
- Linearizes the problem
- Does this by approximating around the mean
- Able to use same equations as in Kalman Filter after linearized

Extended Kalman Filter **National Extended Kalman Filter**

- Deals with non-linear problems
- Also linearizes the problem
- Approximates around sigma points
	- One of these points is the mean
	- Each point has an associated weight
- More computationally expensive

